Available online at www.sciencedirect.com

ENGINEERING
QTRUCTURES

www.elsevier.com/locate/engstruct

ScienceDirect

ELSEVIER

Engineering Structures 29 (2007) 1366-1374

Uncertainty and sensitivity analysis of time-dependent effects in
concrete structures

In Hwan Yang

Daelim Industrial Co., Ltd, Technical Research Institute, 146-12, Susong-dong, Jongro-ku, Seoul 110-732, Republic of Korea

Received 21 March 2006; received in revised form 18 July 2006; accepted 18 July 2006
Available online 10 October 2006

Abstract

The purpose of this paper is to propose the method of uncertainty and sensitivity analysis of time-dependent effects due to creep and shrinkage
of concrete in concrete structures. The uncertainty and sensitivity analyses are performed using the Latin Hypercube sampling method. For
each sample, a time-dependent structural analysis is performed to produce response data, which are then analyzed statistically. Two measures
are examined to quantify the sensitivity of the outputs to each of the input variables. These are partial rank correlation coefficient (PRCC) and
standardized rank regression coefficient (SRRC) computed from the ranks of the observations. Three possible sources of the uncertainties of the
structural response have been taken into account — creep and shrinkage model uncertainty, variation of material properties and environmental
conditions. The proposed theory is applied to the uncertainty and sensitivity of time-dependent axial shortening and time-dependent prestress
forces in an actual concrete girder bridge. The numerical results indicate that the creep model uncertainty factor and relative humidity appear to
be the most dominant factors with regard to the model output uncertainty. The method provides a realistic method of determining the uncertainty
analysis of concrete structures and identifies the most important factors in the long-term prediction of time-dependent effects in those structures.

© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Time-dependent effects of concrete structures result from
creep and shrinkage of concrete. Creep and shrinkage are
important factors in the design of concrete structures. For
example, they affect the setting of bearings of concrete bridges
including the size of sliding plates or laminated bearing pads.
They also affect the sizing and setting of expansion joints
due to time-dependent axial shortening arising from creep and
shrinkage effects of prestress force and thereby also affect
the secondary moments in prestressed concrete bridges. The
creep and shrinkage models which are capable of predicting
long-term structural response are specified in design codes
such as ACI 209-92 [1], CEB-FIP Model Code 90 [2], etc.
However, the application of current code formulations may
result in considerable prediction errors stemming from several
sources of uncertainty. They predict only mean values and
cannot predict the statistical variation. Therefore, a method to
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deal with the uncertainty involved in the prediction of creep and
shrinkage effects of concrete is necessary.

Creep and shrinkage in concrete structures are very complex
phenomena in which various uncertainties exist with regard to
inherent material variations as well as modelling uncertainties.
The study on the uncertainties in creep and shrinkage effects
has been continuously an area of significant efforts. Particular
attention has given to the problem of creep and shrinkage with
uncertainty modelling [3—7] and with the variability in external
loads [8,9]. The variation of creep and shrinkage properties is
caused by various factors commonly classified as internal and
external factors [10]. The change of environmental conditions,
such as humidity, may be considered as an external factor. The
internal factors include the variation of the quality and the mix
composition of the materials used in concrete and the variation
due to internal mechanism of creep and shrinkage.

In the prediction formulas of creep and shrinkage of
concrete, various kinds of parameters are involved to express
the characteristics of concrete under consideration, i.e. the
mix proportion of concrete, the shape of the structure, relative
humidity, etc. Since it is not possible to remove the statistical
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variation involved in the parameters, it may be necessary to
estimate how much the variation of each parameter influences
the predicted values. Several different approaches of sensitivity
analysis have been developed as numerical tools for reliability
assessment of structures [11-15]. Also, a review of different
methods for this sensitivity analysis has been provided by
Novik et al. [16]. Another example for sensitivity analysis is
shown by Tsubaki [17].

The aim of the present study is to propose an analytical
approach for the uncertainty and sensitivity analyses of creep
and shrinkage effects in concrete structures utilizing the
models in the design codes. The present study deals with the
uncertainties in the long-term prediction of creep and shrinkage
effects, taking into account the statistical variation of both
internal and external factors as well as the uncertainty of the
model itself. The sensitivity analysis is performed to show the
relative importance of individual random variables employed
in the creep and shrinkage models. The time-dependent axial
shortening of a prestressed concrete girder bridge is analyzed
to show the application of proposed method.

2. Uncertainty modelling of creep and shrinkage of
concrete

Several material models for shrinkage and creep of concrete
have been proposed both in the literature and in the design
codes. The most commonly used models in the codes are those
suggested by ACI Committee 209 [1] and CEB-FIP MC 90 [2].

2.1. ACI committee 209 recommendations

ACI committee 209 suggests the use of the following
equation for prediction of shrinkage strain.

(t—1)
en(t, o) = V1 ———¢€ (1)
’ f+@—10)""
where, &g (¢, 7o) = shrinkage strain at any time ¢; eg‘h = ultimate
shrinkage strain determined by experiments; f = factor
dependent on curing condition (35 for moist cured concrete,
55 for steam cured concrete); fop = the age of concrete

starting drying (days); ¢t = observation (current) time (days);
¥1 = model uncertainty factor for shrinkage model. Creep
coefficient is expressed by the following equation:

(r — ‘L’)O'6
—¢Cu
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where, C (¢, T) = creep coefficient at any time #; C,, = ultimate
creep coefficient determined by experiments; t = the age of
concrete at first loading (days); ¢ = observation time (days);
¥, = model uncertainty factor for creep model. In the absence
of specific creep and shrinkage data for local aggregates and
material conditions, the average values suggested for C,, and
&g, are, respectively:

Cit,r)y=" 2)

C, =235y, and &g =780 x 10~%y4n (m/m) 3)

where, y,. and yg, represent some correction coefficients.

The coefficients ¥; and ¥, are model uncertainty factors.
Information on model uncertainty can be obtained from
the work of BaZant and Baweja [6]. The mean value and
coefficients of variation of a time-averaged value of ¥’s are
estimated. From their study it is found that the coefficients of
variation of the creep and shrinkage properties were 55.3% for
shrinkage and 52.8% for creep, respectively. The mean values
and coefficient of variation of the ¥ factors reported are:

E[¥]]=1; Vyr = 0553 (4a)
E[¥}]=1; Vyy; = 0.528. (4b)

The coefficients ¥} and ¥ are prediction error terms that
account for the uncertainty inherent in the theoretical model and
the uncertainty of the micro-mechanism of creep and shrinkage
that has been neglected. The values in Eq. (4) include several
sources of uncertainties and may be written as follows:

U= WU, W (i=1,2) (5)

where, ¥; = factor due to inadequacy of the prediction formula;
¥, = factor due to internal uncertainty; ¥g = factor due to
measurement errors and uncertainty in the laboratory (or site)
environment.

The factors to be used in Egs. (1) and (2) are prediction
model uncertainty ¥;, and the coefficient of variations in Eq. (4)
must therefore be corrected to include only model uncertainty.
The factors in Eq. (5) are assumed independent, and the relation
between the coefficients of variation [18] is:

(L4 V) = A+ ViU + Vi) +VE) (=1.2). (6

Few data are available for the estimation of Vy,_, but the
results by Reinhardt et al. [19] indicate that a value between
0.06 and 0.10 is reasonable for test specimens. The coefficient
of variation Vy, was estimated as 0.05 by Madsen [4]. In this
study, the following corrected values for model uncertainties ¥;
are obtained from Eqgs. (4) and (6):

Shrinkage E[¥1] = 1; Vg, = 0.542 (7a)
Creep E[V2] = 1; Vy, = 0.517. (7b)

2.2. CEB-FIP model code 90

The total shrinkage e, (¢, 5) is calculated from:
Ecx(t’ ts) = wlgcx()ﬂs (t - ts) (8)

where ¢.50 = the notional shrinkage coefficient; B; = the
coefficient to describe the development of shrinkage with time;
t = the age of concrete (days) and t; = the age of concrete
(days) at the beginning of shrinkage.

For a constant stress applied at time f#, the creep strain
ecc(t, T) at any time ¢ is calculated as following equation:

o, 1) )

806'(t7 7:) =
Ccl

where, ¢ (¢, T) = creep coefficient; E ;= modulus of elasticity;

0.(t) = sustained stress.
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The creep coefficient ¢ (¢, ) is calculated from CEB-FIP
MC 90 as:

¢, 1) = YagoBc(t — 1) 10)

where, ¢o = the notional creep coefficient; B.(t — t) = the
coefficient to describe the development of creep with time after
loading.

The coefficients of ¥ and ¥, are model uncertainty factors.
An indication of model uncertainty can be obtained also in the
work of BaZzant and Baweja [6]. The coefficient of variation
of the W' factors in total reported by them were 46.3% for
shrinkage and 35.3% for creep, respectively. The values for
model uncertainties ¥; corrected in the same manner as ACI
recommendations are therefore obtained as follows:

Shrinkage E[¥] = 1; Vg, = 0.451
Creep E[¥2] = 1; Vg, = 0.339.

(11a)
(11b)

3. Method of uncertainty analysis

Simulation is the process of replicating the real world based
on a set of assumptions and conceived models of reality. It may
be performed theoretically or experimentally. For engineering
purposes simulation may be applied to predict or study the
performance and/or response of a system or structure. With a
prescribed set of values for the system parameter (or design
variable), the simulation process yields a specific measure
of performance or response. A conventional approach to this
process is the Monte Carlo simulation technique. However,
in practice, Monte Carlo simulations may be limited by
constraints, computer capability and the significant expense
of computer runs in time-dependent structural analysis of
concrete bridges. An alternative approach is to use a constrained
sampling scheme. One such scheme, developed by Iman
and co-workers [20-22], is Latin Hypercube sampling (LHS)
method. By sampling from the assumed probability density
function of the 6 and evaluating Y for each sample, the
distribution of Y, its mean, standard deviation and percentiles
etc., can be estimated.

The LHS method consists of two steps to obtain a N x K
design matrix. The first step is dividing each input variable
into N intervals. The second step is the coupling of input
variables with tables of random permutations of rank numbers.
Every input variable 6, k = 1,2,..., K is described by its
known cumulative distribution function (CDF) f(6;) with the
appropriate statistical parameters. The range of the known CDF
f(6x) of each input variable 6y is partitioned into N intervals
with equal probability of 1/N.

The representative value in each interval is used just once
during the simulation procedure and so there are N observations
on each of the K input variables. They are ordered in the table
of random permutations of rank numbers which have N rows
and K columns. Each row of a table is used on the ith computer
run. For such a sample one can evaluate the corresponding
value Y, of the output variable. From N simulations one can
obtain a set of statistical data {Y} = [Y, Y2, ..., Yy1T. This

set is statistically assessed and thus the estimations of some
statistical parameters, such as the mean value and the variance
of the response, are obtained. Interested readers are referred to
Novik et al. [16] for a more detailed discussion of this sampling
method.

4. Method of sensitivity analysis

The results of the Latin Hypercube simulations can be
used to determine which of the model parameters are most
significant in affecting the uncertainty of the design [23]. Two
closely related, but different, measures will be examined in this
study. These are partial rank correlation coefficient (PRCC) and
standardized rank regression coefficient (SRRC) computed on
the ranks of the observations. This method is particularly useful
when there are a large number of inputs and several outputs
having an associated time history.

Sensitivity analysis in conjunction with sampling is closely
related to the construction of regression models which
approximate the behaviour calculated by the computer runs.
Suppose a model has inputs 6y, ..., 0 and output Y. After
making N runs of the model, the multivariate observations
Oy ..., 0k, Yi;i = 1,...,N) can be used to construct an
approximate regression model of the form:

k
Y =bo+ ) bjb;. (12)
j=1

The constant by and the ordinary regression coefficient
b; are obtained by the usual methods of least squares. The
ordinary regression coefficients are the partial derivatives of the
regression model with respect to the input variables. However,
these ordinary regression coefficients are easily influenced by
the units in which the variables are measured. The problem
arising with different variables being measured in different
units can be eliminated by standardizing all variables used in
the regression model as 6* = (6 — 0) /So where 0 and sy are the
usual sample mean and standard deviation, respectively. The
previous regression model can be rewritten in the following
form:

K
Y* = 2;1;797. (13)
J:

The coefficient of b*% in standardized models is called
the standardized regression coefficient. It is a unit free
measurement; such coefficients are useful since they can
provide a direct measure of the relative importance of the
input variables. The larger the absolute value of b}f, the more
influence the variance 0; has, while values of 4% close to zero
indicate little importance for 6;. After making N runs of the
model with varying input, a correlation matrix between the
input and output is computed for a given step in the output time
history. Let the correlation matrix be represented as follows:
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1 r2 ... Flk | Tly
ry 1 co. T2E | T2y
C= . (14)
1 te2 ... 1 Tky
Tyl Fy2 Tyk ‘ 1

where r;j, 1 < i, j < k is the sample correlation coefficient
for the input variables, while ry; is the sample correlation
coefficient between Y and 0;. The value of r,; is computed by
the following equation.

n n n
D 6ijyi— D6 ) yi/n
i=1 i=1 i=1

Tiy = :
(G- o) (52~ Gom)]
(15)

The inverse matrix C~! can be written in expanded form as
follows:

1 __bi_ A
(1—R§1) 12 Clk (-RD)
1 by
C = C —
21 (-R%) 2% TR
cl=
1 by
C C —
k1 k2 (1-R2) (1KY
b b b 1
2 2 2 2
L (-R) (1-R3) (1-Rj) | (1-Rj)

(16)

where the value b; in C~! is the standardized regression
coefficient (SRC) in Eq. (13); the value R% is the coefficient
of determination from regressing ¥ on 6y,...,6,, and the
value jo is the coefficient of determination from regressing
OjonY, 0r,...,0j1,0j11,...,0k The partial correlation
coefficient for 6; and Y is obtained directly from Clas:

C
Py y=——2_. (17)
! VC€ijCyy
Therefore the partial correlation coefficient (PCC) can be
written as:

Py, = bj/(1—R}) _

T \/(1/(1 -r3) (170 - RY)

The PCC and SRC measure the linear association between
variables. When nonlinear relationships are involved, it is often
more revealing to calculate the SRCs and PCCs on variable
integer ranks than on the actual values for the variables. Such
coefficients are the SRRCs and PRCCs.

5. Application to long-term prediction of axial shortening
and prestress force in concrete bridges

5.1. Description of structure and finite element modelling

Time-dependent effects of a segmentally constructed
prestressed concrete girder bridge as shown in Fig. 1 are studied

Fig. 1. Concrete bridge for practical application.

as a practical application of the variability of the response
of the bridge. The bridge deck consists of seven continuous
spans and each span is 50 m long. The 50 m interior span of
the 7-continuous span bridge system is shown in Fig. 2. It is
a precast segmental prestressed concrete girder bridge whose
typical cross section is also shown in Fig. 2. The interior span
of the box girder has nine segments per cantilever (i.e. per
half span). The segments are placed symmetrically on both
sides of the span. The cantilevers are joined at midspan. The
cantilever tendons (top slab tendons) anchored in each segment
are stressed at the time of erection of that segment, while
the continuity tendons (bottom slab tendons) are stressed after
midspan joining as shown in Fig. 2.

The finite element analysis method in this study is based on
the procedure developed originally by Kang [24] and improved
by Oh and Yang [25] for the analysis of segmentally erected
prestressed concrete bridges. This procedure involves the time-
dependent prediction of deformations and an assessment of
prestress losses in such structures under construction stage,
and after completion of structures. A box girder of arbitrary
plane geometry and variable cross section can be modelled as
an assembly of finite elements interconnected at nodal points.
Each element is divided into a discrete number of concrete and
reinforcing steel layers.

The analytical model for structural analysis consists of
20 nodes, 19 frame elements and 22 prestressing tendons.
The cross section is subdivided into 9 layers (Fig. 2). The
twenty nodes are located at segment joints along the centroidal
axis of the box girder. Nineteen frame elements are used to
model the box girder. The elements are prismatic with the
cross-section of a point at the mid length of the element.
Each cantilever segment and midspan closure segment (key
segment) is modelled with one frame element. Twenty-two
prestressing tendons are used to model the cantilever and
continuity prestressing tendons. Dead load consists of self
weight and the design dead load. The design dead load of
29.4 kN/m, is assumed to be applied permanently, which
contributes to creep.
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Fig. 2. Bridge geometry and analytical model.

Table 1

Statistical properties of basic variables for ACI 209-92 model

Variables Mean value Coefficient of variation Sources
¥ (61) uncertainty factor for shrinkage 1.0 0.542 Ref. [6]
¥, (0,) uncertainty factor for creep 1.0 0.517 Ref. [6]
h(63) relative humidity (%) 61.6 0.269 Observed
f1(64) 28 day concrete strength (MPa) 49.2 0.066 Observed
s/a(f5) sand—aggregate ratio 0.41 0.10 Ref. [8]
S(06) slump (m) 0.15 0.10 Assumed
c(07) cement contents (kg/m3) 510 0.10 Ref. [4]
Table 2

Statistical properties of basic variables for CEB-FIP MC 90 model

Variables Mean value Coefficient of variation Sources
¥ (61) uncertainty factor for shrinkage 1.0 0.451 Ref. [6]
¥, (6) uncertainty factor for creep 1.0 0.339 Ref. [6]
h(63) relative humidity (%) 61.6 0.269 Observed
f1(04) 28 day concrete strength (MPa) 49.2 0.066 Observed

5.2. Statistical properties of input variables

Shrinkage and creep model uncertainty factors (¥, ¥»),
compressive strength of concrete (f), relative humidity (h),
sand—aggregate ratio (s/a), slump (S), and cement contents
(c) are assumed to be random variables. All random variables
are assumed to be normally distributed. It is also assumed
that these variables are independent, which is a simplification.
Each random variable is represented by its mean value and
coefficient of variation. The numerical values for the mean
and the coefficient of variation of input variables are listed
in Table 1 for ACI 209-92 model and in Table 2 for CEB-
FIP MC 90 model. Model uncertainty factors for prediction
models of creep and shrinkage were already examined in Egs.
(7) and (11) in the previous section. The numerical values for
relative humidity and compressive strength of concrete were
determined using the observed data in the sites. The values
for remaining variables were selected on the basis of nominal
values of mix design of concrete.

The site for the bridge has four seasons a year. The
relative humidity is high in summer and low in winter. The
variation of relative humidity is significant over a year. To
investigate the distribution of relative humidity, the records
from the Meteorological Observatory (about 3 km north of the
present bridge) were analyzed statistically and the probability
distribution function was ascertained. Also, to investigate the
distribution of compressive strength of concrete in 28 days,
the results from strength test of concrete cylinders which had
been used in construction were analyzed statistically and the
probability distribution function was obtained.

5.3. Uncertainty analysis results of the axial shortening of
concrete girder

If the values of input variables 61, 6>, ..., 8k are specified,
the creep and shrinkage effects or response Y (6;, t) at time ¢,
such as the axial shortening of concrete girder, can be calculated
by running a computer program through the deterministic
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Fig. 4. Comparison of creep compliance predictions.

analysis of the structure. The statistical prediction of axial
shortening of concrete girder after continuity tendons are all
stressed at midspan has been calculated for 20 samples of
parameter 6;, which represent the number of computer runs.

Each comparison of shrinkage and creep compliance
predictions using ACI 209-92 model and those using CEB-
FIP MC 90 model is shown in Fig. 3 and Fig. 4. Each curve
represents mean value and mean £ (2x standard deviation).
Shrinkage prediction using the ACI 209-92 model is larger
than that using CEB-FIP MC 90 model but creep compliance
prediction using ACI 209-92 model is smaller than that using
CEB-FIP MC 90 model.

The prediction of axial shortening versus time obtained
using ACI 209-92 model is plotted in Fig. 5. The dashed lines in
these figures represent ¥ & 2s(t), in which ¥ = mean response
at age ¢, and s(¢) = standard deviation of the response at age ¢.
As might be expected, the probability band width of structural
response widens with time, indicating an increase of prediction
uncertainty with time. To assure long-term serviceability it
seems reasonable to require that the design of concrete girder
bridges should be based on these limits.

5.4. Sensitivity analysis results of axial shortening and
prestress force

The sensitivity analysis results of axial shortening of girder
using ACI 209-92 model are shown in Fig. 6. For the present
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Fig. 5. Prediction of axial shortening using ACI 209-92 model.
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Fig. 6. Sensitivity analysis of axial shortening of girder using ACI 209-92
model.

problem, the most highly correlated parameters measured by
the SRRC and PRCC is the creep model uncertainty factor.
The two most important variables are creep model uncertainty
factor and relative humidity. The creep model uncertainty
factor has positive SRRCs and PRCCs, which indicates that an
increase of this variable tends to increase the axial shortening.
The relative humidity has negative SRRCs and PRCCs, which
indicates that increase of this variable tends to decrease the
axial shortening. This effect may occur because increase of
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relative humidity tends to reduce the humidity correction factor
in ACI 209-92 model and thus decrease the creep coefficient
and shrinkage value. The variables of creep model uncertainty
factor and relative humidity consistently appear as important
variables in the analyses presented in these figures. The variable
with the next largest SRRCs and PRCCs is shrinkage model
uncertainty factor. It is also seen that the positive correlation is
shown for shrinkage model uncertainty factor, which indicates
that increasing this variable tends to increase the amount of
shrinkage strains. The sensitivity analysis results indicate that
axial shortening was inversely correlated with concrete strength
and weakly positively correlated with slump, sand—aggregate
ratio and cement content.

The sensitivity analysis results of axial shortening of girder
using CEB-FIP MC 90 model are shown in Fig. 7. The
most highly correlated parameters measured by the SRRC and
PRCC is relative humidity. The most important variable at
early ages is creep model uncertainty factor. The value of the
SRRCs and PRCCs of creep model uncertainty factor decreases
gradually with time. The value of the SRRCs and PRCCs of
shrinkage model uncertainty factor increases gradually with
time. Relative humidity and shrinkage model uncertainty factor
are two most important variables at 10,000 days. Creep model
uncertainty factor and shrinkage model uncertainty factor have
positive SRRCs and PRCC:s for axial shortening, while relative
humidity and compressive strength of concrete have negative
SRRCs and PRCC:s for axial shortening.
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Fig. 8. Sensitivity analysis of prestress force using ACI 209-92 model.

The sensitivity analysis results of prestress force using the
ACI 209-92 model are shown in Fig. 8. For the present problem,
the most highly correlated parameters measured by the SRRC
and PRCC are the creep model uncertainty factor. The two
most important variables are creep model uncertainty factor
and relative humidity. The creep model uncertainty factor has
negative SRRCs and PRCCs, which indicates that an increase of
this variable tends to decrease the prestress forces. The relative
humidity has positive SRRCs and PRCCs, which indicates that
increase of this variable tends to increase the prestress force.
This effect may occur because increase of relative humidity
tends to reduce the humidity correction factor in ACI 209-92
model and thus decrease the creep coefficient and shrinkage
value. The prestress force has an inverse relation with the
creep coefficient and shrinkage value. The variables of creep
model uncertainty factor and relative humidity consistently
appear as important variables in the analyses presented in
these figures. The variable with the next largest SRRCs and
PRCCs is shrinkage model uncertainty factor. It is also seen
that the negative correlation is shown for shrinkage model
uncertainty factor, which indicates that increasing this variable
tends to lower the prestress forces. The sensitivity analysis
results indicate that prestress force is positively correlated with
concrete strength and weakly negatively correlated with slump,
sand—aggregate ratio and cement content.
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Fig. 9. Sensitivity analysis of prestress force using CEB-FIP MC 90 model.

The sensitivity analysis results obtained for the CEB-FIP
MC 90 model are shown in Fig. 9. The most highly correlated
variable measured by the SRRC and PRCC is relative humidity.
The most important variable at early ages is the creep model
uncertainty factor. The value of the SRRCs and PRCCs of
the creep model uncertainty factor decreases gradually with
time. The value of the SRRCs and PRCCs of the shrinkage
model uncertainty factor increases gradually with time. Relative
humidity and the shrinkage model uncertainty factor are the
two most important variables at 10,000 days. The creep model
uncertainty factor and shrinkage model uncertainty factor have
negative SRRCs and PRCCs whereas relative humidity and
compressive strength of concrete have positive SRRCs and
PRCCs.

6. Conclusions

A method of uncertainty and sensitivity analysis to assess
the creep and shrinkage effects of concrete structures such
as prestressed concrete bridges is proposed. Latin Hypercube
simulation technique was used to study the uncertainty of
model parameters. The samples are obtained according to
underlying probabilistic distributions, and then the outputs
from the numerical simulations are translated into probabilistic
distributions. The statistical method developed in this study
predicts the variability of the long term prediction of time-
dependent effects of concrete structures. It provides measures
of the expected uncertainty and the distribution of time-
dependent effects. The time-dependent effects versus time

curves obtained from the numerical example indicate a
significant statistical scatter in the predicted long-term axial
shortening. The probability band widens with time, which
indicates an increase of prediction uncertainty with time.

Also, the proposed method can identify the most influential
factors in the long-term prediction of structural response
in concrete structures. The coefficients of the regression
equations, or response surface equation, are related to the
coefficient of determination and can be used to identify the most
important model parameters. Numerical results indicate that the
creep modelling uncertainty factor and the variability of relative
humidity are two most significant factors on time-dependent
effects such as axial shortening of girder and prestress force
in prestressed concrete bridge. The proposed method can be
efficiently used to perform a sensitivity analysis of time-
dependent effects of concrete structures.
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